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ON SEQUENCES WITHOUT GEOMETRIC PROGRESSIONS 

BRIENNE E. BROWN AND DANIEL M. GORDON 

ABSTRACT. Several papers have investigated sequences which have no k-term 
arithmetic progressions, finding bounds on their density and looking at se- 
quences generated by greedy algorithms. Rankin in 1960 suggested looking 
at sequences without k-term geometric progressions, and constructed such se- 
quences for each k with positive density. In this paper we improve on Rankin's 
results, derive upper bounds, and look at sequences generated by a greedy al- 
gorithm. 

1. INTRODUCTION 

Erdos and Turan [1] defined rk(n) to be the least r for which any sequence of r 
numbers less than n must contain a k-term arithmetic progression. Roth [7] showed 
that r3((n) = O(n/ log log n), and Szemeredi [8] showed that rkr(n) = o(n) for all k. 

We will denote all sets of nonnegative integers without a k-term arithmetic pro- 
gression by APFk (for arithmetic progression-free). Erdos conjectured that the 
sum of reciprocals of the (nonzero) terms of any such sequence converge, and of- 
fered $3,000 for a proof or disproof. 

One way to generate an arithmetic progression-free sequence is to use a greedy 
algorithm: start with 0, and add the smallest number which does not form a k-term 
arithmetic progression. Variations on the resulting sequences have been studied by 
several people [2, 3, 5]. For prime k, greedy sequences are just the integers whose 
base-k representation has no digits equal to k - 1. For composite k their behavior 
is still mysterious. 

In [4], the span of a set is defined to be the difference of its largest and smallest 
elements, and sp(k, n) to be the smallest span of a set in APFk with n members, 
and a table of values for sp(k, n) for small k and n due to Usiskin is given. The 
value given for sp(3,.10) in that table is wrong; Table 1 corrects it and gives sp(k, n) 

for a larger range of k and n. 

The corresponding questions for sequences with no geometric progressions have 
received little attention. Rankin [6] used sequences in APFk to form sequences 
with no k-term geometric progressions, and found their density. In ?2 we review 
his methods, and show how sequences coming from a greedy method are superior 
to his for k > 3. In ?3 we derive upper bounds for the density of such sequences. 

Throughout this paper, A will denote an arbitrary sequence of nonnegative inte- 
gers, Ak will be an arbitary sequence in APFk, and A* will be the greedy sequence 
described above. 
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TABLE 1. Smallest span for APFk 

k\n 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 
3 3 4 8 10 12 13 19 23 25 29 31 35 39 40 50 
4 4 5 7 8 9 12 14 16 18 21 22 24 26 27 
5 5 6 7 8 10 11 12 13 15 16 17 18 23 
6 6 7 8 9 11 12 13 14 16 17 18 19 

2. GEOMETRIC PROGRESSION-FREE SEQUENCES 

Let GPFk denote all sets of positive integers with no k-term geometric progres- 
sions. The only previous consideration of geometric progression-free sequences we 
know of is by Rankin [6]. An obvious sequence in GPF3 is the set of squarefree 
numbers, which have density 6/r12 0.608. 

Rankin showed that sequences in APFk can be used to form denser sequences in 
GPFk: 

For a nonnegative sequence of integers A = {a,, a2, ... }, let G(A) be the set of 
all integers 

e,1 e 2 er (1) N=pl P2 .P. Pr 

where the pi are distinct primes, r is any nonnegative integer, and ei E A for 
i=1,... ,r. 

Theorem 1. If A is in APFk, then G(A) is in GPFk. 

Proof. Let {a, as, as2, ... , asta1 } be any set of integers in a geometric progression. 
(Note that, while a E 2, s may be a rational noninteger, e.g. the progression 
9,12,16). Any prime dividing the numerator or denominator of s occurs to powers 
c, c + d, c + 2d, ... , c + (k - 1)d, for some c E 2+ and d E 2. These powers form a 
k-term arithmetic progression, which cannot be contained in A, and so the numbers 
in the geometric progression cannot all be in G(A). l 

Let G* be the set in GPFk generated by the greedy algorithm; gi = 1, and gi 
is the smallest integer which does not form a k-term geometric progression with 

91, ..i-1 

Theorem 2. We have G* = G(A*). 

Proof. Let m be the smallest number in G* which is not in G(A*). We will show 
that m is in a geometric progression with k -1 numbers in G(A*). This contradicts 
the definition of G*, since G* is equal to G(A*) up to m, proving that no such m 
exists. 

Let m = fTj pji fJI qft, where the ej are in A*, and the fi are not. Then for each 

fi, there is an arithmetic progression {fi,i , fl,2 ... v fl,k = fl } with fl,i v f*fl,k-1 E 
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A*. Then 

N1 = fp i fqf" q, 
j I 

N2 = H fi Hf qf1''2, 

i I 

Nk-1 = fJeP; fJqflak-1 

* ~~~~~~~~~i I 

together with m would form a geometric progression. All of N1, .. ., Nk-1 are less 
than m and in G(A*), and so are in G*. They form an arithmetic progression with 
m, contradicting m C G*. O 

Rankin also gave a method to compute the density of a sequence G(A) E GPFk 
of the form (1). The Dirichlet series 

fG(A) (s) = n-s 
nc-G 

has the Euler product 

fG(A)(S) = HFA(P S), 
p 

where, for Ix < 1, 

(2) FA(X) = Xq. 

qGA 

When k is prime, A = A* consists of numbers with no digits equal to k - 1 base 
k, and (2) becomes 

00 

FAZ (X) = j (i + xkv + X2kv + * ?+ X(k-2)kv) 
v=O 

00 1 X(k-l)kv 

1Xkv 

which implies 
00 

1- 

(3) fG* (s) = 

I ((kvs) v=O (((k - 1)kvs)' 
The asymptotic density of G equals the residue at s = 1 of fG(s). For G =G3 

this is 0.7197 (Rankin gave the same sequence) Even for composite k, where there 
is no known closed form for fG* (s), we may still compute the residue to any desired 
precision. For example, for k = 4, A= {0, 1, 2, 4, 5, ... }, and 

fG (S) =f (1+ p-s + p-2s +P-4s +...) 
p 

=((s) f (1 _ p-3s + p-4s _ p-6s + ) 

p 

which has residue 0.895. 
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This is better than the density 0.8626 GPF4 sequence Rankin found. In fact, we 

can show that the greedy sequence is the best of the form (1): 

Theorem 3. If G = G(Ak) for k > 3 and some APFk sequence Ak, then its 

density is no greater than the greedy sequence. 

Proof. Any sequence G = G(A) has a Dirichlet series of the form 

(4) fG(s) = ]7 (ao + aip-s + a2p-2s 
p 

where ai = 1 if i E A, and ai = 0 otherwise. As stated above, the residue at s = 1 

of this function gives the density of the corresponding sequence. 
Suppose there is another sequence A' for which G' = G(A') has density greater 

than the greedy sequence G(A). Let a' be the coefficients for the Dirichlet series 

fG' (s). The density of G' is greater than G if and only if the residue of fG' (s) at 
s = 1 is greater than the residue of fG(S). 

At some point A' diverges from the greedy sequence, and we have ai = 1 and 

a/ = 0 for some i. Let H be the greedy sequence truncated at i, and H' be the 

same sequence with i removed and containing all j > i. Then H has density less 

than G and H' has density greater than G', so it suffices to show that 

(5) fH(s) = (ao + alp-s + + ap(i-)S + p-is) 
p 

has a larger residue at s = 1 than 

fH'(s) = (aO ?+ ? +ap-(i-)s + pi+l)s + p-(i+2)s +? ) 
p 

(6) = P(o?. 

(6) = tI (~ao + + ai-lp-(i1s+P 
p 

This is equivalent to showing that 

lim fH(S) > 1 
s-U fH/ (S) 

But this is obvious, since for p = 2 the terms in (5) and (6) are equal at s = 1, 

and for all p > 2 and s > 1 the term in (5) is larger. 1 

This leaves open the question of whether geometric progression-free sequences 

not of the form (1) have better density than greedy sequences. They can certainly 

do better over finite ranges; the greedy GPF3 sequence: 

1 2 3 5 6 7 8 10 11 13 
14 15 16 17 19 21 22 23 24 26 
27 29 30 31 33 34 35 37 38 39 
40 41 42 43 46 

may be improved by removing 5 and adding 25 and 45. 
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3. UPPER BOUNDS 

It is easy to show that the density of a GPFk sequence is strictly less than one: 

Theorem 4. For any k > 3, the density of a sequence in GPFk is at most 1- 2-k. 

Proof. For any N, let a be an odd number less than N/2k-1. Then the k numbers 
a, 2a, 4a, ... ., 2k-1a cannot all appear in a GPFk sequence. There are N/2k different 
a's, so this excludes N/2k numbers less than N from the sequence. 

Theorem 4 can be improved slightly: 

Theorem 5. For any k > 3, the density of a sequence in GPFk is at most 

k 5-(k-1) - 6-(k-1) 
1 - 2- - 2 

Proof. Let b be an odd number, N/6k-1 < b < N/5k-1. Then the numbers 
3k-lb, 3k-25b, ... ., 5k-lb cannot all appear in the sequence. There are N/(2.5k-l)- 
N/(2 6k-1) such b's, and none of them are the numbers a, 2a,.. ., 2k-1a from The- 
orem 4, since they are all odd, and 3k-1b > a for a and b in the ranges chosen. 
Moreover, since 6k-1/5k-1 < 5/3, the numbers 3k- lb, 3k-25b, ... , 5k-l b are dis- 
tinct for different b in the range. D 

TABLE 2. Densities for geometric progression-free sequences 

k greedy density upper bound 
3 0.71974 0.868889 
4 0.89537 0.935815 
5 0.95805 0.968336 
6 0.98085 0.984279 
7 0.99116 0.992166 

The bounds can be further improved by taking fractions of larger primes over 
smaller ranges, but the improvements become marginal very quickly. 

Table 2 gives the best known upper and lower bounds for the density of sequences 
in GPFk for k < 7. For k = 3 and 4 they are still far apart, but as k gets large 
they approach each other. 

Theorem 6. As k --> oo, the optimal density for a sequence in GPFk is 1- 

2-k( - o(1)). 

Proof. From Theorem 4, we have that the density is no greater than 1 -2 

Therefore, it suffices to show that the greedy sequence G(Ak) has the stated density. 
It is easy to see that the greedy APFk sequence Ak starts off 

{0,1,... ,k-2,k,k+1,... 2k-3,2k -1} 

for k even and 

{0, 1,.. ., k-2, k, k + k1,..., 2k-2,12k} 
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for k > 3 odd. For simplicity, we will handle the odd case (the even case is virtually 
identical). The density of G(Ak) is the residue at s = 1 of 

j (i ?+p-s + +?p(k-2)s + p-ks + + p-(2k-2)s +p-2ks +? ) 

p 

- II 1 tpS (i _(k-l)s +?-ks P-(2k-l)s +? ) 

(-;(S) 7 j - (k-l)s + -ks -(2k-1)s +...) 
p 

The residue of ((s) is one, so the density is 

-P (1_p(k-1) + p-k _ p- (2k-1) + ) 

p 

>I (- 2k - 2- (2k-1)) rI ( _p-(k-1)) 

p>2 

1-2-k 2-(2k-1) 

.(1 - 2-(k-1))((k - 1) 

For large k, we have ((k - 1) --+1 + 2-(k- 1), and the density becomes 

1-2k(l _ (1)). C1 
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